

FDANews Webinar

PDA's Post Approval Change Innovation for Availability of Medicines Program (PAC iAMsm)

February 8th, 2017

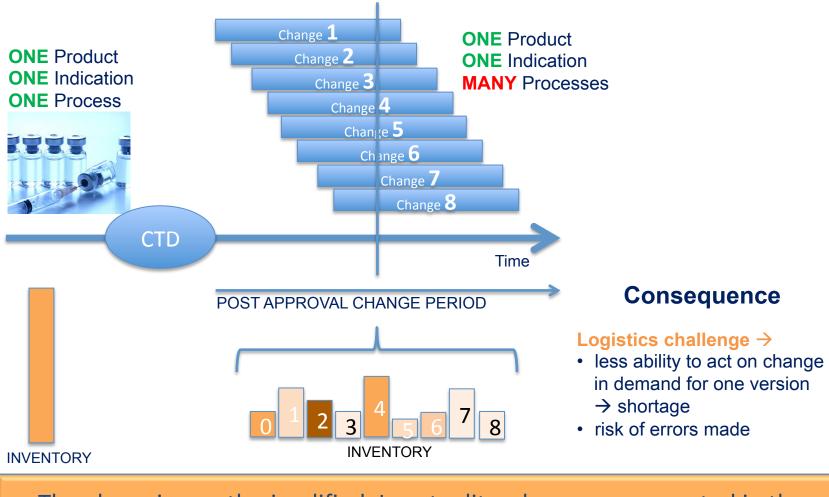
Anders Vinther, Emma Ramnarine, Melissa Seymour, Denyse Baker

Globalization vs. Nationalization

Companies are globalized

Ideally: one product for one world

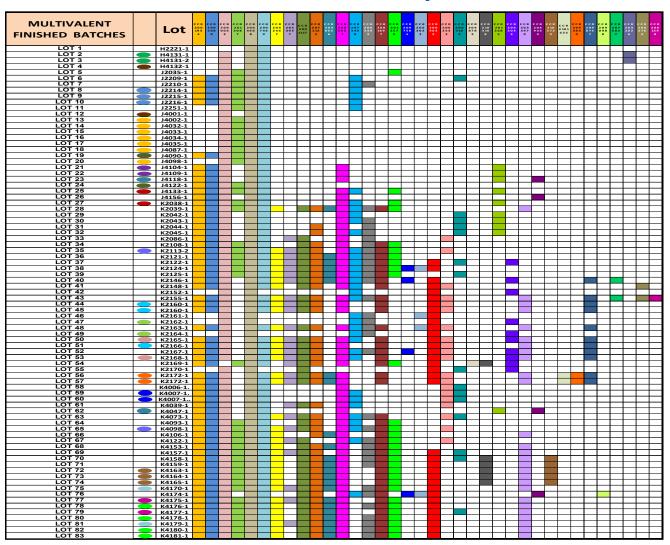
Regulatory approvals are nationalized*



Reality: one product with 100+ approvals

*Note: or regionalized (e.g. EU)

Post Approval Change, explained


The above is greatly simplified. In actuality, changes are counted in the thousands every year for a full product portfolio.

PAC- a real example

One pentavalent vaccine - one year

83 batches: 55 variations of the same process...

PDA's Contribution

About PDA

- Global organization with >10,000 individual members
- Connecting People, Science and Regulation
- Committed to developing scientifically sound, practical technical information and expertise to advance pharmaceutical and biopharmaceutical manufacturing science and regulation so members can better serve patients.
- www.pda.org
- Website for PAC iAM sm <u>pda.org/PAC</u>

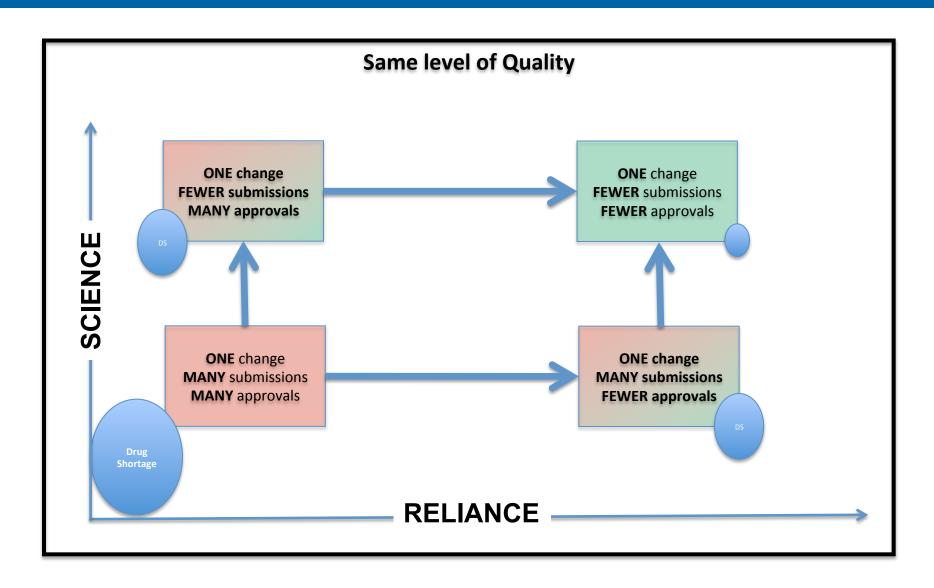
PDA PAC iAMsm Deliverables

- ✓ Call For Action
- ✓ Points to Consider
 - ✓ Lifecycle Management
 - ✓ Effective PQS for Management of PACs
 - QRM and Knowledge Management for PACs
- Industry Survey
- Technical Report: Post Approval Change Implementation for Biologics and Pharmaceutical Drugs
- Global Post Approval Change
 Management Protocol Library of Examples
- Workshops, Trainings, Tools & Templates

The Post Approval Change Paradox

The cGMPs require facilities and processes to be current	yet	Even simple PACs take up to 5 years for global approval to make facility/process current
Improvements are intended to reduce risks	yet	Long PAC approval timelines delay risk reduction
Improvements intended to assure better availability of drug products	yet	Long PAC approval timelines hinder availability
Changes in high tech industries usually happens in months	yet	In the pharma industry changes are measured in years

"Wicked Problem" Characteristics


- Difficult to clearly define
- Many interdependencies and often multi-causal
- Attempts to address the problem often leads to unforeseen consequences
- Often not stable

- · Usually no clear solution
- Socially complex
- Rarely is the responsibility of one stakeholder only
- Solutions involve changing behaviors
- Some characterized by chronic policy failure

Source: Vinther, A., Drug Shortage is a "Wicked Problem", PDA Letter May 2016

Industry and Regulators Working Together

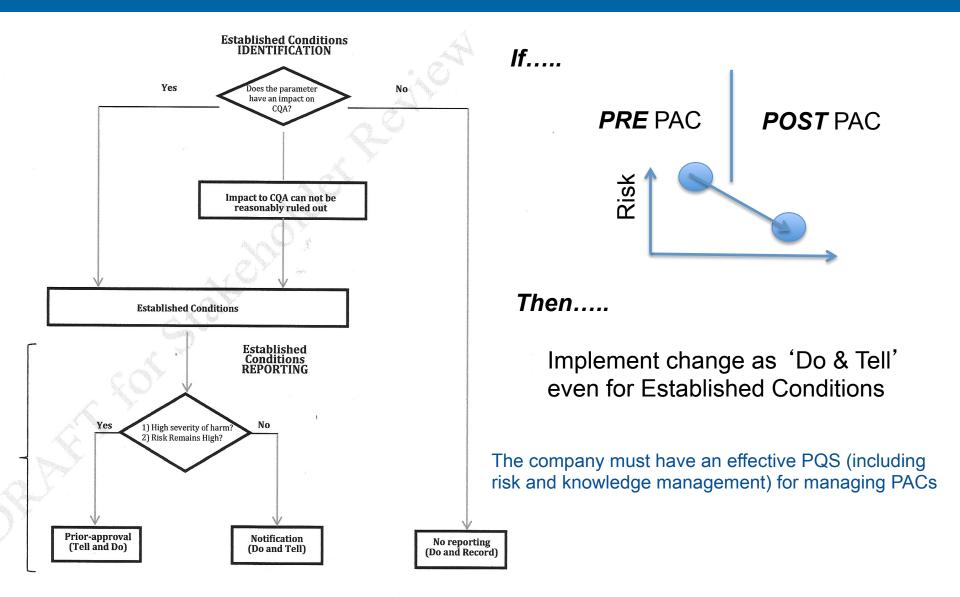
Established Conditions, explained

- Legally binding information (or approved matters) considered necessary to assure product quality
- Contained in a regulatory submission, submitted by the applicant, and approved, as necessary, by the regulatory authority.
- May be specifically proposed in a submission or they may be implicit based on existing regulation and guidance.
- Any change to Established Conditions necessitates a submission to the regulatory authority

Focus & Contribution from PDA

- Dialog on convergence of health authorities on "global" set of Established Conditions (via ICH and WHO) per product
- Increased product/process
 understanding and risk management to
 help shift Established Conditions
 changes from "tell & do" to "do & tell"

Reporting Categorization of Changes


- Prior-approval: Changes with sufficient risk; require regulatory authority review and approval.
- Notification: Moderate to low risk changes may not require prior approval; generally require less information to support the change. Communicated to regulatory authority formally within a defined time period after implementation.
- The lowest risk changes are only managed and documented within the PQS and not reported; may be assessed on inspection.

Focus & Contribution from PDA

- How to apply QRM for effective change categorization
- Focus risk scope as: impact to product quality, efficacy, and/or patient safety
- Global alignment on PAC categorization
- Allow more changes in the PQS based on risk level; reduce number of prior approval changes
- Changing the mindset to allow faster implementation when PACs result in lower risk

Established Conditions & Reporting Categories explained

Changes to Established Conditions, Example

Change in a starting raw material (can impact a CQA)

COMPANY A

<u>Extensive</u> documented data/ understanding of raw material attributes and impact to CQA

> Risk Assessment

High risk

Prior Approval "Tell and Do"

COMPANY B

<u>Extensive</u> documented data/ understanding of raw material attributes and impact to CQA

> Risk Assessment

Moderate/low risk

Notification "Do and Tell"

COMPANY C

<u>Limited</u> data/understanding of raw material attributes and impact to CQA

No Risk Assessment

Prior Approval "Tell and Do"

The same PAC will have different regulatory flexibility depending on knowledge and risk as well as whether or not the Company has an effective PQS for managing PACs

Pharmaceutical Quality System Effectiveness for Managing Post Approval Changes

- Firms that have implemented an effective PQS
 per Q10 and regional GMPs, provide confidence
 to the regulatory authority that changes are
 supported by data obtained through application
 of patient-centric, risk-based principles. As a
 result, regulatory authorities can allow more
 post-approval changes to be managed under the
 PQS, without requiring prior review and approval
 by the regulatory authority.
- Building an effective PQS is the responsibility of a firm and it is not the intent to require by default a specific inspection assessing the state of the PQS before the firm can use the post-approval change benefits described in the guideline.
- If the PQS is found not to be effective, it may result in restrictions on the ability to make changes with downgraded notification to regulatory authorities.

Focus & Contribution from PDA

- Stronger adoption of ICH Q10 Annex 1 when companies can demonstrate an
 effective PQS and product and process
 understanding, including the use of
 QRM they "gain the opportunity to
 optimise science and risk based postapproval change processes to
 maximise benefits from innovation and
 continual improvement"
- Develop requirements and KPIs of key PQS elements that are essential for effective PAC management – PDA PtC on PQS Effectiveness for PAC Management

PDA Points to Consider: Technical Product Lifecycle Management Pharmaceutical Quality System Effectiveness For Managing Post-Approval Changes

- Implementation of an effective PQS is essential for a company to achieve product realization, establish and maintain a state of control, and facilitate continual improvement
- When changes are made during the commercial life of a product, <u>an effective PQS, product</u> and <u>process understanding</u>, and <u>use of quality risk management</u> should ensure that product quality, patient safety, and adequate supply to patients are maintained
 - This, according to ICH Q10 Annex 1, should provide companies the opportunity to manage postapproval changes (PAC) with reduced regulatory oversight
- The Points to Consider paper is a step-by-step guide for implementing an effective PQS for managing PACs – and is a direct continuation of ICH Q10
- Objective is to advice companies and regulators to take advantage of ICH Q10, Annex 1
- Focuses on
 - Management Responsibilities
 - PQS Elements: Process Performance and Product Quality Monitoring System, CAPA System, Change Management System, Management review of process and product quality
 - Enablers: QRM & Knowledge Management
 - Quality Culture

KPIs to Demonstrate Effectiveness of the PQS for PACs

Process Performance & Product Quality Monitoring

- # or % PACs related to preventive or continual improvement measures
- # recurring deviations/adverse trends addressed by PACs

CAPA

- % PACs with unintended risk/ consequence
- PAC CAPA effectiveness

Change Management

- # or % PACs that did not meet intended objectives
- Adherence to implementation timelines for PACs
- Alignment between company and regulators on categorization of PACs
- PAC effectiveness

Management Review

- Review KPIs for other PQS elements
- % PACs only covered in PQS do & tell vs. tell & do
- # inspectional/internal audit findings related to PACs
- Level of continual improvement driven by APR/PQR and PPPQMS

Management Responsibilities

- PQS Effectiveness conclusion from Management Review
- Timeliness of PAC implementation
- Actual vs planned resources used for PACs
- Survey assessment of quality mindset
- # and trend of drug shortages

Knowledge Management

 # or % of PACs initiated due to new knowledge

Quality Risk Management

- No unacceptable risks introduced as a result of PACs
- Risk reduction due to PAC
- # health authorities that have accepted effective QRM application for PAC categorization

Product Specific Lifecycle Management Strategy (PSLCM)

10-15 yrs 2-3 yrs 15+ yrs 1-2 yrs

Pharmaceutical Development Technology Transfer Commercial Manufacturing Product Discontinuation

Objectives of LCM

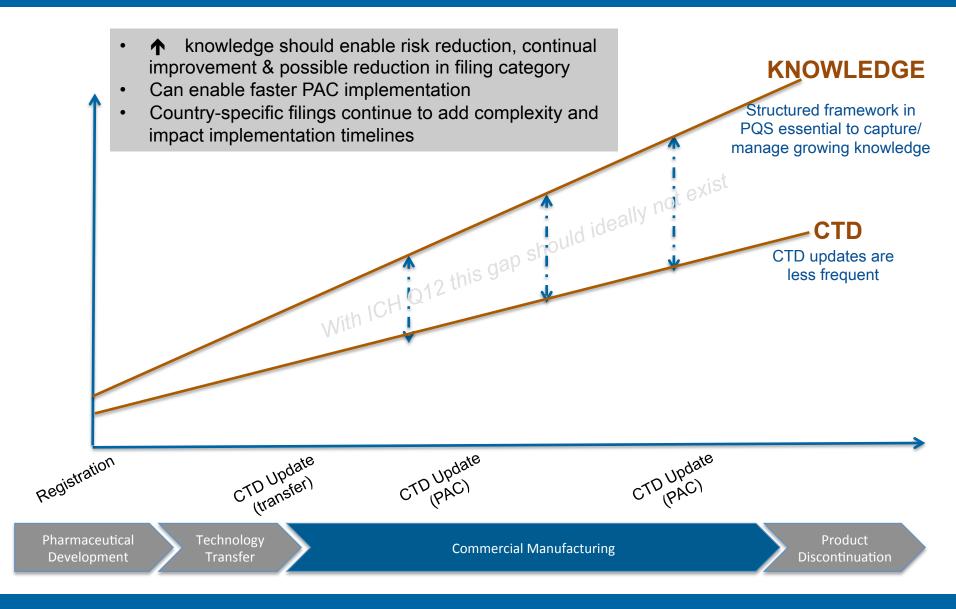
- Achieve product realization
- Establish and maintain a state of control
- Facilitate continual improvement

Elements of Lifecycle Management

- Product Established Conditions (EC) incl. Control Strategy Summary
- Planned Post-Approval Changes
- Summary of how product lifecycle will be managed in the PQS
 - Managing Product & Process Knowledge During the Commercial Lifecycle
 - Product & Process Monitoring
 - Annual Product Review (APR)
 - Post-marketing Surveillance and Pharmacovigilance
 - Control System Management
 - Managing PACs in the PQS

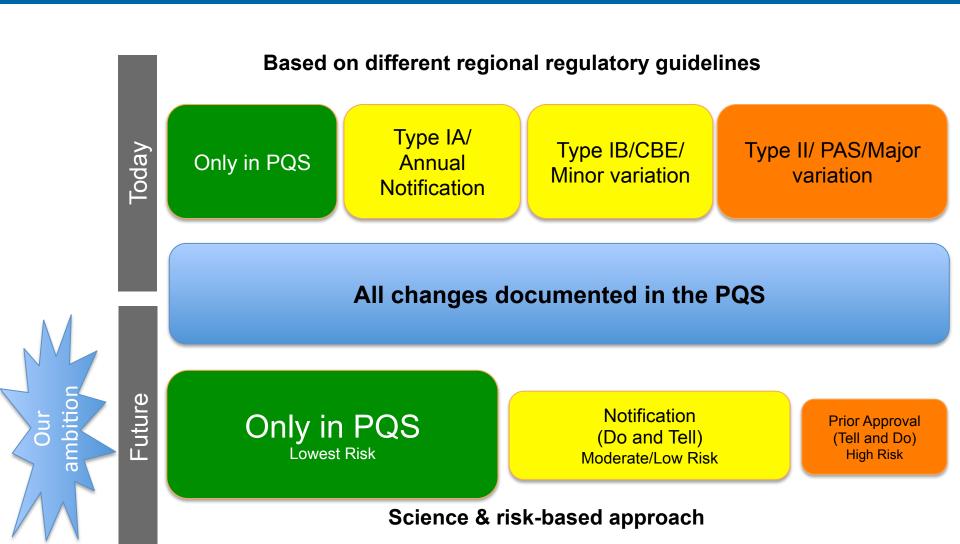
Focus & Contribution from PDA

 Expand LCM discussion from managing PACs to a much broader conversation about LCM elements and the importance of Knowledge Management


Note: Additional elements to consider

Supply strategy

Drug shortage prevention plan


Role of Knowledge Management in LCM and PAC Management

Moving to Science & Risk-Based PAC Management

PDA Deliverables and PAC iAM Website

Mission: Identify, assess and address current barriers to implementation of PACs that are intended to ensure continued operations, drive innovation and continual improvement

- ✓ Website for PAC iAM sm pda.org/PAC
- ✓ Call For Action PDA Letter January 2016
- ✓ Points to Consider PDA Journal
 - ✓ Lifecycle Management
 - ✓ Effective PQS for Management of PACs
 - QRM and Knowledge Management for PACs
- ✓ PDA PAC iAM Survey Open until Feb 16th
- Technical Report: Post Approval Change Implementation for Biologics and Pharmaceutical Drugs
- Global Post Approval Change Management Protocol Library of Examples
- Workshops, Trainings, Tools & Templates
 - PDA EU Annual Meeting June 13-14, Berlin
 - PAC Workshop Sept 13-14, Wash D.C.
- Drug Shortages (TR68): Enable reduction of drug shortages resulting from PAC complexity pda.org/drugshortage
- Manufacturing Science & Operations Program & Aging Facilities: Expedite PACs related to implementation of new technologies and facility upgrades

PDA PAC iAMsm Task Force

- Anders Vinther, Sanofi Pasteur (co-lead)
- Emma Ramnarine, Roche/Genentech (co-lead)
- Ursula Busse, Novartis
- Marcello Colao, GSK Vaccines
- Julia Edwards, Biogen
- Kara Follman, Pfizer
- Karolyn Gale, Emergent BioSolutions
- Kassidy Good, Mylan Laboratories
- Barbara Jengtes, PhACT GmBH

- Maik Jornitz, G-CON LLC
- Morten Munk, NNE Pharmplan
- Kevin O'Donnell, HPRA
- Melissa Seymour, Biogen
- Mihaela Simianu, Pharmatech Associates
- Lisa Skeens, Pfizer
- Denyse Baker, PDA
- Rich Levy, PDA

PDA PAC iAMsm Task Force

- Additional contact information
 - Denyse Baker, <u>baker@pda.org</u>

Website for PAC iAM sm <u>pda.org/PAC</u>